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VISCOPLASTIC DYNAMICS OF ISOTROPIC PLATES

OF VARIABLE THICKNESS UNDER EXPLOSIVE LOADING

UDC 539.4Yu. V. Nemirovskii and A. P. Yankovskii

A problem of viscoplastic dynamic bending of isotropic plates of variable thickness is formulated. A
method for integrating the initial-boundary problem is developed. Numerical results are compared with
a known analytical solution obtained within a rigid-plastic model; good agreement is demonstrated.
The efficiency of the method developed is verified by numerical computations. It is shown that the
final flexure of plates can be reduced severalfold by applying rational design.
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Introduction. Small and large plates form the basis of numerous protective fences and elements in ship-
building, machine-building, and aviation engineering, as well as in construction industry. Under high-intensity
dynamic loading, the damage of these elements largely determines the possibility of subsequent operation of these
objects. The problem of dynamic calculation of such structural elements, therefore, is one of the most important
problems in mechanics of deformable solids. The majority of the currently existing solutions are based on the
model of an ideal rigid-plastic solid (see [1, 2] and other publications). The solutions are normally approximate and
are obtained with the use of extreme principles of dynamics of a rigid-plastic body [3]. The solutions have been
constructed for uniform isotropic plates of constant thickness, the dependence of the yield stress of the plate material
on the strain rate being ignored. It is known, however, that rational definition of the plate thickness can exert a
significant effect on plate resistance (in particular, dynamic resistance) to external forcing, and the dependence of
the yield stress (e.g., for steels [4]) on the strain rate may be fairly significant and cannot fail to affect deformation of
a thin-walled structure under dynamic loading. In particular, the neglect of this circumstance is one of the reasons
for overprediction of the final flexure by 30 to 80% [2] in numerical calculations over experimental data.

The present study was aimed at developing a method for solving the initial-boundary problem of dynamic
viscoplastic bending of isotropic plates of constant and variable thickness with allowance for viscoplastic hardening
of the plate material and at analyzing the influence of the plate contour on the magnitude of the final flexure under
explosive loading.

1. Formulation of the Problem. We consider transverse dynamic bending of a plate of variable thick-
ness H . We introduce an orthogonal (possibly, curvilinear) coordinate system (x1, x2, z) such that the plane z = 0
coincides with the mid-plane of the plate before deformation begins. The transverse distributed load p(x1, x2, t)
acts in the z direction; in the case of small flexure w, therefore, the equation of motion of such a plate has the
form [5]

[M11,1 + fM12,2 + β(M11 − M22)/x1],1 + f(M12,1 + fM22,2 + 2βM12/x1),2

+ β[M11,1 + fM12,2 + β(M11 − M22)/x1]/x1 + p(x, t) = ρH(x)w(x, t),tt. (1)
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Here

f =

{
1, β = 0,

1/x1, β = 1
(2)

[β = 0 if (x1, x2, z) is a Cartesian coordinate system and β = 1 if (x1, x2, z) is a cylindrical coordinate system],

Mij(x, t) =

H/2∫
−H/2

σij(x, z, t)z dz, i, j = 1, 2, x = {x1, x2} ∈ G, (3)

Mij are the moments arising in the plate, σij is the stress in the structure, ρ is the bulk density of the material, G is
the projection of the region occupied by the plate onto the plane z = 0; if a cylindrical polar coordinate system is
used, x1 is the polar radius and x2 is the polar angle; the subscripts after the comma indicate partial differentiation
with respect to the spatial variables x1 and x2 or with respect to time t.

According to the viscoplastic model [6], the stress σ in a uniaxial stressed state depends on the strain rate
ξ of the material. Approximating the dependence σ ∼ ξ by a two-segment broken line (other approximations are
also possible, e.g., a multi-segment broken line), we obtain

σ =

{
Eξ, |ξ| � ξs = σs/E,

sign (ξ)σs + Es(ξ − sign (ξ)ξs), |ξ| > ξs,
(4)

where E and Es are the coefficients of linear viscosity and linearly viscous hardening of the material, σs is the stress
at the hinge point of the two-segment broken line approximating the dependence σ ∼ ξ (σs can be interpreted as
the yield stress of the material). We reach a limiting transition to the rigid-viscoplastic model as E → ∞ and to
the rigid-plastic model at Es = 0 and E → ∞.

The plate behavior obeys Kirchhoff’s laws; hence, in the case of small flexure, the strain εij , the strain
rate ξij , the flexure w, and the flexure rate v are related as follows [5, 6]:

εij(x, z, t) = zκij(x, t), ξij(x, z, t) = zκ̇ij(x, t), i, j = 1, 2, |z| � H(x)/2. (5)

Here

κ̇11 = −v,11, κ̇22 = −f2v,22 − βv,1/x1, κ̇12 = κ̇21 = −fv,12 + βv,2/x2
1; (6)

the expressions for the parameters of bending of the plate mid-plane κij are obtained from Eq. (6) with v replaced
by w; the dot indicates the derivative with respect to time.

Using relations (3)–(5) and the governing equations for materials with nonlinear viscosity [6], we obtain the
moments Mij in the form

Mii = Ciiiiκ̇ii + Ciijj κ̇jj , Mij = 2Cijij κ̇ij , j = 3 − i, i = 1, 2, (7)

where the expressions for the coefficients Cijkl depend nonlinearly on H and κ̇mn and are rather cumbersome. By
virtue of the known formal similarity of the governing equations of the theory of elastoplastic deformation and
the theory of viscoplastic flow [7], the expressions for Cijkl coincide with the expressions for similar coefficients
obtained in [8] for elastoplastic bending of plates with linear hardening (in this case, one should set ν = 1/2 and
ωk = 0 (1 � k � N) in [8] and replace −w,mn by κ̇mn; in the case of axisymmetric bending of a circular plate, the
coefficients Cijkl at Es = 0 were determined in [9]).

With allowance for Eq. (6), we substitute the expressions for the moments (7) into the equation of motion
(1) and write the latter (for convenience of further discussion) as a system of two equations

ρH(x)v,t = p(x, t) − D(v), w,t = v(x, t) (t � 0, x ∈ G), (8)

where

D(v) = {[C1111v,11 + C1122(f2v,22 + βv,1/x1)],1 + 2f [C1212(fv,12 − βv,2/x2
1)],2

+ β(C1111 − C1122)(v,11 − f2v,22 − βv,1/x1)/x1},1 + f{2[C1212(fv,12 − βv,2/x2
1)],1

+ f [C1122v,11 + C1111(f2v,22 + βv,1/x1)],2 + 4βC1212(fv,12 − βv,2/x2
1)/x1},2
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+ β{[C1111v,11 + C1122(f2v,22 + βv,1/x1)],1 + 2f [C1212(fv,12 − βv,2/x2
1)],2

+ β(C1111 − C1122)(v,11 − f2v,22 − βv,1/x1)/x1}/x1. (9)

For simultaneous integration of system (8), we have to use the initial conditions

w(x, t0) = w0(x), v(x, t0) = v0(x) (10)

and the known boundary conditions [5], which are not given here. [If kinematic boundary conditions are set for the
flexure w, the second equality in (8) can be used to obtain the corresponding conditions for the flexure rate v. If
static boundary conditions are set on the edges, relations (6) and (7) should be used.]

2. Method for Solving the Initial-Boundary Problem. If the rate v is known, the flexure w can
be readily determined from the second equation in (8) under the first initial condition of (10). The first equation
in (8) is a parabolic-type quasi-linear partial differential equation closed with respect to the flexure rate v, which
contains the first-order derivative of v with respect to time t and up to the fourth-order derivatives with respect to
the variables x1 and x2.

For numerical integration with respect to time t of the initial-boundary problem corresponding to the first
equation in (8), we use one of the generalized Runge–Kutta methods, namely, the two-stage generalized Lobatto
method IIIA (method of trapezoids) (see [10]), which has the second-order accuracy with respect to τ (τ is the step
in time t). According to this method, we obtain

vn+1(x) = vn(x) + τ(pn(x) − D(vn(x)) + pn+1(x) − D(vn+1(x)))/(2ρH(x)), (11)

where

pn(x) = p(x, tn), vn(x) = v(x, tn), tn+1 = tn + τ, n = 0, 1, 2, . . . (t0 = 0), (12)

the time step τ > 0 may be variable (τ = τn).
We write Eq. (11) in the form

τD(vn+1) + 2ρH(x)vn+1 = 2ρH(x)vn + τ(pn(x) + pn+1(x)) − τD(vn). (13)

If the flexure rate vn at the nth time step is known, Eq. (13) with allowance for Eq. (9) determines the
solution at the next (n + 1)th layer. The drawback of Eq. (13) is the necessity of applying a nonlinear differential
operator D to the known function vn to calculate the right side of this equation. To avoid differentiation in the
right side of Eq. (13), we consider the functions

Pn(x) = τD(vn(x)) + 2ρH(x)vn(x), n = 0, 1, 2, . . . . (14)

Then, the resolving Eq. (13) acquires the form

τD(vn+1(x)) + 2ρH(x)vn+1(x) = Pn+1(x), (15)

where the right side is known and is found from the recurrent formula

Pn+1(x) = −Pn(x) + 4ρH(x)vn(x) + τ(pn(x) + pn+1(x)) (16)

obtained by comparing Eq. (14) and the right side of Eq. (13).
For zero initial conditions [see Eq. (10)]

v0(x) = v0(x) = 0, (17)

Eq. (14) with allowance for Eq. (9) yields

P0(x) = 0, (18)

and Eqs. (16)–(18) yield

P1(x) = τ(p0(x) + p1(x)). (19)

Thus, for determining the flexure rate at the (n + 1)th time step, we have to integrate Eq. (15) with the
known right side (16) [with allowance for Eqs. (17)–(19)] under appropriate boundary conditions obtained from the
boundary conditions for the first equation in (8) by formal replacement of v by vn+1.
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Equation (15) with allowance for Eq. (9) is a fourth-order quasi-linear elliptic equation, and it can be
interpreted as an equation of equilibrium of steady-state creep of a transversely bent plate on a linearly viscous
base. By virtue of the formal similarity of equations of steady-state creep (within the framework of the flow theory)
and equations of the theory of elastoplastic deformations [7], equality (15) coincides with the equation of static
elastoplastic transverse bending of a plate on a linearly elastic base, if the function vn+1 is understood as flexure.
The boundary-value problem corresponding to Eq. (15) can be integrated, therefore, by known methods of statics
or steady-state creep.

Equation (15) can be linearized by an iterative method proposed in [7] for solving problems of steady-
state creep, which is similar to the method of variable parameters of elasticity, widely used in solving elastoplastic
problems in statics [11]. The method of variable parameters of elasticity was adapted to plates subjected to bending
in [8]. After such linearization, Eq. (15) can be considered as a linear elliptic equation of bending of an isotropic
inhomogeneous plate on a linearly elastic base and can be integrated with the use of numerical, variational, and
other methods, which have been well developed in the theory of bent plates [12]. (The convergence of the method
of variable parameters of elasticity was proved in [9, 11].)

As the initial approximation vm
(0)(x) for the function vm(x), we can use the solution at the previous time

layer

vm
(0)(x) = vn(x), m = n + 1

or the function

vm
(0)(x) = 3vn(x) + (τpn(x) − Pn(x))/(ρH(x)) (m = n + 1)

obtained by Taylor’s formula vm(x) = vn(x)+ τv,t (x, tn)+O(τ2) with allowance for the expression for v,t from (8)
and the operator D(vn) from (14) under the assumption that the solution of the problem at the previous nth time
layer is known.

Let us consider a model problem of axisymmetric dynamics of circular and ring-shaped plates of variable
thickness along the radius r. The load p, the manner of plate attachment, and the plate thickness are assumed
to be independent of the polar angle x2; hence, the flexure and its rate are also independent of x2. In this case,
Eq. (15) with allowance for Eq. (9) can be reasonably written as a system of two ordinary differential equations
with respect to Mm

r (r) and vm(r) (r ≡ x1):

−τ
d2Mm

r

dr2
+ A1

dMm
r

dr
− A2M

m
r − B1

d2vm

dr2
− B2

dvm

dr
+ 2ρH(r)vm = Pm(r),

−Mm
r − C1111

d2vm

dr2
− C1122

r

dvm

dr
= 0, m = n + 1, r0 < r < r1.

(20)

In these equations,

A1 = −τ

r
(2 − a), A2 = −τ

r

da

dr
, B1 = −τb

r
, B2 = −τ

r

db

dr
,

a = C1122/C1111, b = (C2
1122/C1111 − C2222)/r;

(21)

Mm
r (r) ≡ Mm

11(r) is the radial moment in the plate at the mth time layer, r0 and r1 are the radii of the inner and
outer (0 < r0 < r1) edges of the plate, and the function Pm(r) is determined by Eq. (16) with x replaced by r.

We linearize system (20) by the method indicated above. Let vm
(k)(r) and Mm

(k)(r) be known kth approxima-
tions of the sought functions vm and Mm

r . Then, the next approximations of these functions can be determined by
the system of linear equations

−τ
d2Mm

(l)

dr2
+ A

(k)
1

dMm
(l)

dr
− A

(k)
2 Mm

(l) − B
(k)
1

d2vm
(l)

dr2
− B

(k)
2

dvm
(l)

dr
+ 2ρHvm

(l) = Pm,

−Mm
(l) − C

(k)
1111

d2vm
(l)

dr2
− C

(k)
1122

r

dvm
(l)

dr
= 0, m = n + 1, l = k + 1, r0 < r < r1,

(22)

where the coefficients A
(k)
i and B

(k)
i (i = 1, 2) are known and are found from Eqs. (21) with the use of the function

vm
(k) (see [8]).
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System (22) should be subjected to boundary conditions. At the center of a circular plate, we have

dvm
(l)

dr
= 0,

dMm
(l)

dr
= 0, m = n + 1, l = k + 1, r = 0. (23)

The conditions on the plate edges are

vm
(l) = 0, Mm

(l) = 0, m = n + 1, l = k + 1 for r = r0 and r = r1 (24)

if the plate is simply supported and

vm
(l) = 0,

dvm
(l)

dr
= 0, m = n + 1, l = k + 1 for r = r0 and r = r1 (25)

if the plate is clamped. (Other support conditions can also be imposed, e.g., support conditions on a viscoelastic
base, etc.)

Replacing the derivatives in Eqs. (22), (23), and (25) by finite differences on a uniform grid along r with a
step h, we obtain finite-difference analogs of Eqs. (22) and boundary conditions (23) and (25) with the second order
of approximation in terms of h for a three-point template. To solve the corresponding system of linear algebraic
equations, we can use a stable matrix sweep method [13].

Numerous calculations show that the iterative process (22)–(25) always converges.
If the flexure rate at the nth and (n + 1)th time layers is known, we can use the second equation in (8)

and the method of trapezoids [with allowance for the first initial condition in (10)] to determine the flexure at the
(n + 1)th layer with the second-order accuracy in terms of τ :

wn+1 = wn + τ(vn + vn+1)/2, n = 0, 1, 2, . . . . (26)

In the case of viscoplastic deformation, the resolving equation of plate dynamics [the first equation in (8)
with allowance for (9)] is a parabolic-type quasi-linear equation with respect to the flexure rate v. It is known that
the general theory of stability and convergence of finite-difference schemes has not been adequately developed for
quasi-linear differential equations [14]. Therefore, the basic criterion of reliability of any finite-difference scheme is
based on approximate solutions of test (model) problems whose analytical solutions are known.

The authors have not yet proved the stability of the numerical scheme (15), (26) in the general case, where
the operator D [see Eq. (9)] is nonlinear. Nevertheless, the stability of this scheme is supported by the physical
correctness (noncontradiction) of results of numerous calculations and the good agreement between numerical results
and available analytical solutions (see Sec. 3). In the case of linear viscosity [see Eq. (4) with ξs → ∞], the spectral
stability of scheme (13), (15) can be proved by repeating all reasoning in [10] used to prove the stability of the
generalized Runge–Kutta methods for solving the problem of unsteady heat conduction, which is described by a
parabolic equation containing a derivative with respect to time t of the first order only [like the first equation in
(8)].

3. Discussion of Calculated Results on Inelastic Dynamics of Circular and Ring-Shaped Plates.
Let us examine dynamic viscoplastic bending of circular plates of radius r1 = 1 m. The plate thickness can be
constant [H(r) = H∗ = const] or variable: for a simply supported plate,

H(r, s) = sH∗ + 2H∗(1 − s)(r2
1 − r2)/r2

1 (0 � r � r1, 0 < s � 1) (27)

or

H(r, s) = sH∗ +
H∗π2

4(π − 2)
(1 − s) cos

( πr

2r1

)
(0 � r � r1, 0 < s � 1); (28)

for a clamped plate,

H(r, s, rmin) = sH∗ +
H∗(1 − s)

r4
min − r2

minr2
1 + r4

1/3
(r2

min − r2)2 (0 < s � 1, 0 < rmin < r1) (29)

or

H(r, s, rmin) = sH∗ +
H∗(1 − s) cos2 (πr/(2rmin))

1/2 + (rmin/(πr1)) sin (πr1/rmin) + (rmin/(πr1))2(cos (πr1/rmin) − 1)
,

0 < rmin < r1, 0 < s � 1. (30)
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If the plate thickness is set in the form (27)–(30), its volume equals the volume of a plate of constant
thickness H∗. It follows from Eqs. (27)–(30) that dH/dr = 0 (r = 0) at the plate center; for 0 < s < 1, Eqs. (27)
and (28) predict that the plate thickness at the edge r = r1 is smaller than at the center (r = 0); the parameter
rmin in (29) and (30) determines the polar radius r that ensures the minimum (if 0 < s < 1) plate thickness
H(rmin, s, rmin) = sH∗; for s = 1, Eqs. (27)–(30) predict that the plate has a constant thickness H∗.

The external distributed load is an explosive-type frontal load

p(r, t) = p(t) =

{
p0 = const > 0, 0 < t � T0,

0, t > T0 > 0
(31)

or

p(r, t) = p(t) = p0 exp (−αt) (t > 0), (32)

where p0 is the load intensity or the load at the initial time t0 = 0 and α = 12 sec−1 is the load attenuation
parameter. (Again, another law of time variation of the explosive load can be prescribed [2]; this is not important
for the present study.)

Below we consider plates made of the D16 aluminum alloy (ρ = 2780 kg/m3 and σs = 380 MPa [15])
or of high-quality low-carbon steel (ρ = 8000 kg/m3 and σs = 248 MPa [4]). The viscous hardening coefficient
Es = 90.9 MPa · sec for steel was obtained on the basis of tabular data from [4] by the least squares technique. In
all calculations performed, we assumed that E = 1016 Pa · sec [see Eq. (4)], which corresponds to the viscoplastic
model approaching the model of a rigid-viscoplastic solid.

To test the method described in Sec. 2, we compare the results of numerical computations with the known
analytical solution [1] obtained by an ideal rigid-plastic scheme (Es = 0) for a simply supported plate of constant
thickness H∗ under dynamic loading (31). According to [1], two levels of loading have to be distinguished: 1) loading
of low and medium intensity, which provides

ps < p0 � 2ps; (33)

2) loading of high intensity, which provides

p0 > 2ps. (34)

In Eqs. (33) and (34),

ps = 6Ms/r2
1, Ms = σsH

2
∗/4, (35)

Ms is the ultimate moment, and ps is the ultimate uniformly distributed transverse load.
At the loading level (33), no translationally moving plastic zones occur in the plate, the time Tf of motion

termination (final time) is

Tf = p0T0/ps, (36)

and the final flexure is calculated by the formula

w(r, Tf ) =
p0(p0 − ps)

ρH∗ps
T 2

0

(
1 − r

r1

)
, 0 � r � r1, (37)

i.e., the mid-plane of the plate is deformed to a cone. At the loading level (34), plate motion is accompanied by
the emergence of a translationally moving plastic circular zone, which decreases with time and shrinks to the plate
center. The time of motion termination is again determined by Eq. (36), whereas the final flexure is calculated as

w(r, Tf ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p0T
2
0

2ρH∗

[ p0

2ps

(
3 − r

r1
− r2

r2
1

− r3

r3
1

)
− 1

]
, 0 � r � rp,

p0T
2
0

2ρH∗

[ p0

2ps

(
3 − rp

r1
− r2

p

r2
1

− r3
p

r3
1

)
− 1

](
1 − rp − r

rp − r1

)
, rp < r � r1,

(38)

where the value of rp is determined by the equation

p0

2ps
=

r3
1

(r1 − rp)2(r1 + rp)
. (39)
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TABLE 1

Comparison of Analytical and Numerical Solutions of the Problem
of Inelastic Dynamics of a Circular Plate Made of Low-Carbon Steel

Solution
p0 = 2ps = 1.1904 MPa p0 = 4ps = 2.3808 MPa

Tf , sec Wmax Tf , sec Wmax

Analytical 0.2 0.744 0.4 3.72
Numerical 0.193 (3.5%) 0.581 (22.0%) 0.388 (3.0%) 3.60 (3.14%)

x

1

4

3

2

_0.5 0.50 1.0
0
_1.0

W

2 00

2

2 0

101 3

Fig. 1. Comparison of the final flexure of a circular plate determined analytically
and numerically: calculation by Eq. (37) with p0 = 2ps (1); numerical calculation
with p0 = 2ps (1′); calculation by Eqs. (38) and (39) with p0 = 4ps (2); numerical
calculation with p0 = 4ps (2′); numerical calculation with p0 = 4ps with allowance for
viscous hardening (2′′); numerical calculation for a clamped plate with p0 = 4ps (3).

Table 1 contains the exact values calculated by Eqs. (36)–(39) and approximate values calculated by the
scheme described in Sec. 2 for the time of motion termination Tf and the maximum dimensionless final flexure
Wmax = H∗wmax/(2r2

1), which arises at the plate center. In the calculations, the characteristic time period T = 1 sec
used to study the plate motion was divided into 1000 layers (τ = T/1000), and 201 nodes were set along the plate
radius. The calculations were performed for medium-intensity loading (p0 = 1.1904 MPa), which corresponds to
p0 = 2ps for a low-carbon steel plate of thickness H∗ = 0.04 m, and for high-intensity loading (p0 = 2.3808 MPa),
which corresponds to p0 = 4ps [see Eq. (35)]. The time of loading (31) was T0 = 0.1 sec. The figures in parentheses
in Table 1 show the difference in the numerical and analytical solutions expressed in percent.

Figure 1 shows the dimensionless final flexure W (x) = H∗w(x)/(2r2
1) (x = r/r1) determined numerically and

by Eqs. (37)–(39). (The maximum values of flexure on curves 1, 1′, 2, and 2′ are listed in Table 1.) It follows from
Table 1 and Fig. 1 that the final time Tf obtained numerically is in good agreement with the value of Tf predicted
by Eq. (36); instead, the final flexure calculated by the scheme described in Sec. 2 under low- and medium-intensity
loading can differ from the analytical solution (37) by dozens of percent (cf. curves 1 and 1′), but this difference
between the numerical solution and analytical solution (38), (39) under high-intensity loading rapidly decreases
with increasing loading amplitude and reaches approximately 3% already at p0 = 4ps (see Table 1 and curves 2
and 2′ in Fig. 1). With a further increase in loading intensity p0, the error of the numerical solution remains roughly
unchanged. Thus, for p0 = 8ps = 4.7616 MPa, the values of Tf and Wmax obtained numerically and analytically
differ by 2 and 3%, respectively.

It should be noted that the numerical solution obtained by the scheme described in Sec. 2 cannot unlimitedly
approach the analytical solution (37)–(39). This is caused by three factors. First, the analytical solution (37)–(39)
is obtained on the basis of an ideal rigid-plastic model, whereas the numerical solution is obtained on the basis of
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Fig. 2. Maximum final flexure of simply supported (a) and clamped (b) circular plates versus the contouring
parameter: (a) curves 1 and 2 refer to the calculation by Eqs. (27) and (28) for steel plates, respectively,
curves 3 and 4 refer to the calculation by Eqs. (27) and (28) for aluminum plates, respectively; (b) the solid
and dashed curves show the calculations with the use of contours (29) and (30), respectively; rmin = 0.9r1

(1 and 2), 0.8r1 (1′ and 2′), and 0.7r1 (1′′ and 2′′).

a viscoplastic model (4) in which the solution depends on linear viscosity E �= ∞ necessary to ensure unambiguity
of the dependence σ ∼ ξ. Second, the analytical solution is obtained with the Trask yield criterion [1], and the
numerical solution is obtained with the Mises yield criterion [6]. Third, it follows from Eqs. (36)–(38) that the
magnitude of the final flexure and the final time substantially depend on the excess pressure (on the value of
p0/ps > 1) responsible for plate motion. If the loading intensity p0 is fixed, the excess pressure is determined by
the ultimate load ps, which is calculated by Eq. (35) if the Trask yield criterion is used. If the Mises yield criterion
is used, ps ≈ 6.33Ms/r2

1 [16] [i.e., 5.5% greater than the value predicted by Eq. (35)], which leads to reduction of
the excess pressure. These factors are responsible for reduction of the final time and the magnitude of the final
flexure determined by the scheme described in Sec. 2, as compared with the analytical solution (36)–(39), especially
for low- and medium-intensity loading. The analytically calculated final flexure (37)–(39) is known to exceed the
experimental value by 30–80%; that is why the numerical solution agrees better with the experiment than the
analytical solution [2].

The results listed in Table 1 are obtained by an ideal rigid-plastic model and a viscoplastic model (Es = 0).
If we take into account the dependence of the yield stress of low-carbon steel on the strain rate (Es �= 0), we obtain
different values of the final time and final flexure. Thus, curve 2′′ in Fig. 1 characterizes the final flexure of the
plate with allowance for viscous hardening of its material at p0 = 4ps. A comparison of curves 2′ and 2′′ shows that
allowance for the dependence of the yield stress on the strain rate substantially reduces the maximum values of the
final flexure (almost by a factor of 14), which agrees with experimental data [2].

In addition, the magnitude of the final flexure is significantly affected by the manner of plate attachment.
Curve 3 in Fig. 1 characterizes the final flexure of a clamped plate under loading intensity p0 = 4ps = 2.3808 MPa
without allowance for viscous hardening (Es = 0). A comparison of curves 2′ and 3 shows that replacement
of a simply supported plate by a clamped plate leads almost to a threefold decrease in the final flexure. Viscous
hardening of steel being taken into account, the maximum final flexure is almost 30 times smaller than the maximum
on curve 3.

Below we considered the dynamics of plates of constant thickness H∗. By varying the plate contour, we can
control the final flexure whose values within the viscoplastic model characterize the degree of structural damage.
Figure 2 shows the maximum final flexure Wmax of simply supported (Fig. 2a) and clamped (Fig. 2b) plates versus
the contouring parameter s in Eqs. (27)–(30) under explosive-type loading (32) of different intensities p0. Curves 1
and 2 in Fig. 2a are calculated with the use of Eqs. (27) and (28), respectively, for steel plates with characteristic
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Fig. 3. Final flexure of circular and ring-shaped plates of constant and variable thickness with
different types of attachment: simply supported steel plates with thickness distributed by Eq. (28)
with s = 1.0 (1) and 0.3 (1′); simply supported aluminum plates with thickness distributed by
Eq. (27) with s = 1.0 (2) and 0.4 (2′); clamped steel plates with thickness distributed by Eq. (29)
with rmin = 0.7r1 and s = 1.0 (3) and 0.6 (3′); curve 4 refers to the simply supported ring-shaped
aluminum plate of constant thickness.

sizes H∗ = 0.04 m and r1 = 1 m with allowance for viscous hardening of the material for an initial load p0 = 5 MPa.
Curves 3 and 4 are obtained with the use of Eqs. (27) and (28), respectively, for plates made of the D16 alloy, with
the same characteristic sizes, for p0 = 1.8 MPa (the yield stress of aluminum alloys is independent of the strain rate
[17]). All curves in Fig. 2b are obtained for clamped steel plates with the same characteristic sizes for an initial
load p0 = 15 MPa. The solid and dashed curves are calculated by Eqs. (29) and (30), respectively, for different
values of the parameter rmin. Thus, curves 1 and 2 are obtained for rmin = 0.9r1 curves 1′ and 2′ are obtained for
rmin = 0.8r1, and curves 1′′ and 2′′ are obtained for rmin = 0.7r1.

All curves in Fig. 2 have local minimums, and the values of Wmax in these minimums is several times smaller
than that at s = 1 (for constant-thickness plates). Therefore, rational selection of the plate thickness can ensure
severalfold reduction of the final flexure. Figure 3 shows the final flexure W (x) for some contoured (curves 1′–3′)
and non-contoured (curves 1–3) plates.

Scheme (22)–(25) also allows calculating inelastic dynamics of ring-shaped plates. Curves 4 in Fig. 3 char-
acterize the final flexure of a simply supported ring-shaped (r0 = 0.2r1) aluminum plate of constant thickness
H∗ = 0.04 m under initial loading p0 = 4.5 MPa.

4. Conclusions. The method described in the present paper allows effective solution of problems of
viscoplastic dynamics of plates of constant and variable thickness under explosive loading. Definition of a rational
distribution of the plate thickness offers a severalfold decrease in the maximum final flexure and, hence, a significant
decrease in plate damage with a fixed consumption of the plate material.
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